178 research outputs found

    Cytosol-derived proteins are sufficient for Arp2/3 recruitment and ARF/coatomer-dependent actin polymerization on Golgi membranes

    Get PDF
    AbstractThe actin cytoskeleton has been implicated in protein trafficking at the Golgi apparatus and in Golgi orientation and morphology. Actin dynamics at the Golgi are regulated in part by recruiting Cdc42 or Rac to the membrane through a binding interaction with the coatomer-coated (COPI)-vesicle coat protein, coatomer. This leads to actin polymerization through the effector, N-WASP and the Arp2/3 complex. Here, we have used reconstitution of vesicle budding to test whether Arp2/3 is recruited to membranes during the formation of COPI vesicles. Our results revealed that ARF1 activation leads to greatly increased Arp3 levels on the membranes. Coatomer-bound Cdc42 and pre-existing F-actin are important for Arp2/3 binding. ARF1-dependent Arp2/3 recruitment and actin polymerization can be reconstituted on liposomal membranes, indicating that no membrane proteins are necessary. These results show that activated ARF1 can stimulate Arp2/3 recruitment to Golgi membranes through coatomer, Cdc42 or Rac, and N-WASP

    BAFF controls B cell metabolic fitness through a PKCβ- and Akt-dependent mechanism

    Get PDF
    B cell life depends critically on the cytokine B cell–activating factor of the tumor necrosis factor family (BAFF). Lack of BAFF signaling leads to B cell death and immunodeficiency. Excessive BAFF signaling promotes lupus-like autoimmunity. Despite the great importance of BAFF to B cell biology, its signaling mechanism is not well characterized. We show that BAFF initiates signaling and transcriptional programs, which support B cell survival, metabolic fitness, and readiness for antigen-induced proliferation. We further identify a BAFF-specific protein kinase C β–Akt signaling axis, which provides a connection between BAFF and generic growth factor–induced cellular responses

    Nab2p and the Thp1p-Sac3p Complex Functionally Interact at the Interface between Transcription and mRNA Metabolism

    Get PDF
    THP1 is a conserved eukaryotic gene whose null mutations confer, in yeast, transcription and genetic instability phenotypes and RNA export defects similar to those of the THO/TREX complex null mutations. In a search for multicopy suppressors of the transcription defect of thp1Δ cells, we identified the poly(A)+ RNA-binding heterogeneous nuclear ribonucleoprotein Nab2p. Multicopy NAB2 also suppressed the RNA export defect of thp1Δ cells. This result suggests a functional relationship between Thp1p and Nab2p. Consistently, the leaky mutation nab2-1 conferred a transcription defect and hyper-recombination phenotype similar to those of thp1Δ, although to a minor degree. Reciprocally, a purified His6-tagged Thp1p fusion bound RNA in vitro. In a different approach, we show by Western analyses that a highly purified Thp1p-Sac3p complex does not contain components of THO/TREX and that sac3Δ confers a transcription defect and hyper-recombination phenotype identical to those of thp1Δ. mRNA degradation was not affected in thp1Δ mutants, implying that their expression defects are not due to mRNA decay. This indicates that Thp1p-Sac3p is a structural and functional unit. Altogether, our results suggest that Thp1p-Sac3p and Nab2p are functionally related heterogeneous nuclear ribonucleoproteins that define a further link between mRNA metabolism and transcription

    Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles

    Get PDF
    Cytoskeletal dynamics at the Golgi apparatus are regulated in part through a binding interaction between the Golgi-vesicle coat protein, coatomer, and the regulatory GTP-binding protein Cdc42 (Wu, W.J., J.W. Erickson, R. Lin, and R.A. Cerione. 2000. Nature. 405:800–804; Fucini, R.V., J.L. Chen, C. Sharma, M.M. Kessels, and M. Stamnes. 2002. Mol. Biol. Cell. 13:621–631). The precise role of this complex has not been determined. We have analyzed the protein composition of Golgi-derived coat protomer I (COPI)–coated vesicles after activating or inhibiting signaling through coatomer-bound Cdc42. We show that Cdc42 has profound effects on the recruitment of dynein to COPI vesicles. Cdc42, when bound to coatomer, inhibits dynein binding to COPI vesicles whereas preventing the coatomer–Cdc42 interaction stimulates dynein binding. Dynein recruitment was found to involve actin dynamics and dynactin. Reclustering of nocodazole-dispersed Golgi stacks and microtubule/dynein-dependent ER-to-Golgi transport are both sensitive to disrupting Cdc42 mediated signaling. By contrast, dynein-independent transport to the Golgi complex is insensitive to mutant Cdc42. We propose a model for how proper temporal regulation of motor-based vesicle translocation could be coupled to the completion of vesicle formation

    The human PAF complex coordinates transcription with events downstream of RNA synthesis.

    Get PDF
    The yeast PAF (yPAF) complex interacts with RNA polymerase II and coordinates the setting of histone marks associated with active transcription. We report the isolation and functional characterization of the human PAF (hPAF) complex. hPAF shares four subunits with yPAF (hCtr9, hPaf1, hLeo1, and hCdc73), but contains a novel higher eukaryotic-specific subunit, hSki8. RNAi against hSki8 or hCtr9 reduces the cellular levels of other hPAF subunits and of mono- and trimethylated H3-Lys 4 and dimethylated H3-Lys 79. The hSki8 subunit is also a component of the human SKI (hSKI) complex. Yeast SKI complex is cytoplasmic and together with Exosome mediates 3\u27-5\u27 mRNA degradation. However, hSKI complex localizes to both nucleus and cytoplasm. Immunoprecipitation experiments revealed that hPAF and hSKI complexes interact, and ChIP experiments demonstrated that hSKI associates with transcriptionally active genes dependent on the presence of hPAF. Thus, in addition to coordinating events during transcription (initiation, promoter clearance, and elongation), hPAF also coordinates events in RNA quality control

    RSC, an Essential, Abundant Chromatin-Remodeling Complex

    Get PDF
    AbstractA novel 15-subunit complex with the capacity to remodel the structure of chromatin, termed RSC, has been isolated from S. cerevisiae on the basis of homology to the SWI/SNF complex. At least three RSC subunits are related to SWI/SNF polypeptides: Sth1p, Rsc6p, and Rsc8p are significantly similar to Swi2/Snf2p, Swp73p, and Swi3p, respectively, and were identified by mass spectrometric and sequence analysis of peptide fragments. Like SWI/SNF, RSC exhibits a DNA-dependent ATPase activity stimulated by both free and nucleosomal DNA and a capacity to perturb nucleosome structure. RSC is, however, at least 10-fold more abundant than SWI/SNF complex and is essential for mitotic growth. Contrary to a report for SWI/SNF complex, no association of RSC (nor of SWI/SNF complex) with RNA polymerase II holoenzyme was detected

    Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton

    Get PDF
    AbstractThe mammalian TOR (mTOR) pathway integrates nutrient- and growth factor-derived signals to regulate growth, the process whereby cells accumulate mass and increase in size. mTOR is a large protein kinase and the target of rapamycin, an immunosuppressant that also blocks vessel restenosis and has potential anticancer applications. mTOR interacts with the raptor and GβL proteins [1–3] to form a complex that is the target of rapamycin. Here, we demonstrate that mTOR is also part of a distinct complex defined by the novel protein rictor (rapamycin-insensitive companion of mTOR). Rictor shares homology with the previously described pianissimo from D. discoidieum[4], STE20p from S. pombe[5], and AVO3p from S. cerevisiae[6, 7]. Interestingly, AVO3p is part of a rapamycin-insensitive TOR complex that does not contain the yeast homolog of raptor and signals to the actin cytoskeleton through PKC1 [6]. Consistent with this finding, the rictor-containing mTOR complex contains GβL but not raptor and it neither regulates the mTOR effector S6K1 nor is it bound by FKBP12-rapamycin. We find that the rictor-mTOR complex modulates the phosphorylation of Protein Kinase C α (PKCα) and the actin cytoskeleton, suggesting that this aspect of TOR signaling is conserved between yeast and mammals
    • …
    corecore